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Abstract

The extraction of object features from massive unstructured point clouds with dif-
ferent local densities, especially in the presence of random noisy points, is not a trivial
task even if that feature is a planar surface. Segmentation is the most important step in
the feature extraction process. In practice, most segmentation approaches use geo-
metrical information to segment the 3D point cloud. The features generally include
the position of each point (X, Yand Z), locally estimated surface normals and residuals
of best fitting surfaces; however, these features could be affected by noisy points and in
consequence directly affect the segmentation results. Therefore, massive unstructured
and noisy point clouds also lead to bad segmentation (over-segmentation, under-
segmentation or no segmentation). While the RANSAC (random sample consensus)
algorithm is effective in the presence of noise and outliers, it has two significant dis-
advantages, namely, its efficiency and the fact that the plane detected by RANSAC
may not necessarily belong to the same object surface; that is, spurious surfaces may
appear, especially in the case of parallel-gradual planar surfaces such as stairs. The
innovative idea proposed in this paper is a modification for the RANSAC algorithm
called Seq-NV-RANSAC. This algorithm checks the normal vector (NV) between the
existing point clouds and the hypothesised RANSAC plane, which is created by three
random points, under an intuitive threshold value. After extracting the first plane, this
process is repeated sequentially (Seq) and automatically, until no planar surfaces can
be extracted from the remaining points under the existing threshold value. This prevents
the extraction of spurious surfaces, brings an improvement in quality to the computed
attributes and increases the degree of automation of surface extraction. Thus the best fit
is achieved for the real existing surfaces.

KEYWORDS: feature extraction, fit to reality, normal vectors, planar surfaces, RANSAC
algorithm, segmentation, terrestrial laser scanner, unstructured 3D point clouds
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INTRODUCTION

MORE AND MORE CLOSE RANGE SURVEY APPLICATIONS, such as 3D modelling, as-built
surveys, documentation, restoration and reconstruction of objects, require automatic processing
of massive point clouds to extract surfaces of the recorded objects. Terrestrial laser scanners
(TLS) are considered very efficient tools for the acquisition of large quantities of data because
of their speed, giving them considerable potential for data collection for 3D modelling. But
TLS data, as with all other source tools for 3D data acquisition, is provided in 3D point clouds
(X, Y, Z), which are not immediately compatible with mathematical models, that is to say no
planar surfaces and no straight edges are directly provided in the digital model (Filin, 2002;
Boulaassal et al., 2007). The final 3D point clouds are dependent on many factors, such as the
colour, roughness of different surfaces, the TLS instrument resolution and the registration step,
and appear with a finite thickness for planar surfaces (that is, they are in general not flat)
(Boulaassal et al., 2009). Three-dimensional unstructured point clouds can be acquired even in
the case of 2-5D range images once two or more such images are registered; the resulting data
loses its 2-5D character and has to be represented as an unstructured 3D point cloud (Rabbani
et al., 2006). In all cases, the goal is to create a 3D digital object that best fits reality
(Remondino, 2003).

The segmentation process is the essential step in obtaining surfaces, since the extraction of
features of the different building elements basically depends on the accuracy of the segmentation
step (Rodriguez Gonzalvez et al., 2007). At the same time, the accuracy of the segmentation step
is strongly linked with the fitting process (Varady et al., 1997; Rabbani, 2006).

The relations between segmentation and fitting are like the “chicken and egg”
problem, because if a priori information about the surfaces and their locations is
available we can just pick the points which are within a small distance of the surface.
Similarly, if we know that a certain group of pixels (points) belongs to one surface,
we can easily find the type of surface they represent. (Varady et al., 1997—page 261)

Usually a TLS acquires massive unstructured 3D point clouds (randomly distributed) with
different local densities, especially in the presence of random noisy points; the spatial point
distribution and the point density cannot be assumed to be fixed (Filin, 2002). Therefore, most
segmentation approaches use geometrical information to segment the 3D point cloud. The
features generally include the position of each point (X, Y and Z), locally estimated surface
normals and residuals from the best fitting surfaces. These features result from the fitting
process, which could be affected by outlier points and consequently directly affect the
segmentation results. Therefore, segmentation for massive unstructured point clouds also leads
to bad segmentation that may consist of:

(a) over-segmentation (one feature segmented to several segments);
(b) under-segmentation (several features segmented to one segment); and
(c) no segmentation (feature is not segmented or wrongly segmented).

As man-made structures are dominated by planar surfaces, many attempts have been made
to segment planar surfaces from point clouds; unfortunately in many cases these were not
acquired by TLS instruments, with most authors in this field focusing on points acquired by
airborne laser scanners (ALS) (such as Gorte, 2002; Tovari and Pfeifer, 2005) or through image
matching (such as Bauer et al., 2003).

Due to its merits of quality and effectiveness, the RANSAC (random sample consensus)
algorithm was introduced by Fischler and Bolles (1981) to deal with outliers with respect to
common TLS data, but it has a significant disadvantage, namely, the plane detected by
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RANSAC may not necessarily belong to the same object surface and spurious surfaces may
result, especially in the case of parallel-gradual planar surfaces such as stairs. Therefore, a new
approach is proposed based on a modification of the RANSAC algorithm called “Seq-
NV-RANSAC” to extract planar surfaces directly from 3D point clouds, at the same time
avoiding the spurious results obtained by RANSAC in cases of parallel-gradual planar surfaces
such as stairs. This approach is designed especially for dealing with TLS data, but it can also be
used for any 3D point cloud.

RELATED WORK
The Segmentation Process

The segmentation process is generally defined as a grouping of elements such as points
into one region which shares similar spatial properties (Rabbani et al., 2006; Biosca and
Lerma, 2008). It is one of the main research areas in the laser scanning field, designed to
introduce some level of organisation to the data before extraction of useful information (Filin
and Pfeifer, 2006). It is also a very important step as a precursor to object recognition and
model fitting (Rabbani, 2006). When segmentation is employed as a pre-processing step before
the application of filtering algorithms, it is called segmentation-based filtering (Tévari and
Pfeifer, 2005). Therefore, the segmentation processes for planar surfaces on man-made objects
can be considered as a first step in the creation of 3D model documentation with a best fit to
reality directly from 3D point clouds. However, although segmentation is one of the main
processing steps, it is far from being solved even for planar features (Hoover et al., 1995).

In the past decade, many algorithms have been designed to extract planar surfaces from
point clouds using segmentation methods. Usually one of three distinct methods is employed
for segmenting points: region growing (Hofmann et al., 2002; Dold and Brenner, 2004; Pu and
Vosselman, 2006), clustering of features (Filin, 2002; Hofmann, 2004; Lerma and Biosca,
2005; Filin and Pfeifer, 2006; Biosca and Lerma, 2008) or the model fitting method (Bauer
et al., 2003; Bretar and Roux, 2005; Boulaassal et al., 2007, 2009). While region-growing and
feature-clustering methods are based on geometrical criteria for grouping homogeneous
regions that are present in the point cloud data, the model fitting algorithms are based on fitting
geometric primitive shapes.

The Region-Growing Method

The region-growing method by Besl and Jain (1988) identifies homogeneous patterns in
the data but is restricted to one specific pattern (the seed element). This method assumes that
there is a part of the data-set where all points within some specific distance belong to the same
surface (Vosselman et al., 2004). Therefore, it can be seen as a combination of two steps:
identification and then growing of the seed surface. The growing of surfaces can be based on
one or more of the three criteria for accepting points into the plane: proximity of point, global
planarity and surface smoothness using the normal vector. However, there is no universal
criterion which is valid for every case (Biosca and Lerma, 2008).

Several extensions for surface-growing methods of segmentation have been suggested.
Gorte (2002) presents a variation of a region-growing algorithm for ALS data. A triangulated
irregular network (TIN) is used to describe the basic elements of the surface. The merging of
triangular elements is carried out by comparing the plane equation of neighbouring triangles.
Tovari and Pfeifer (2005) proposed a segmentation method for ALS data based on region
growing. They estimate the normal vector at each point using the k nearest neighbours. Then,
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in the growing step, the neighbouring points are added to the segment based on criteria of
similarity in normal vectors, distance to the growing plane and distance to the current point.
Rabbani et al. (2006) proposed a method to segment industrial scenes based on a smoothness
constraint. They use local surface normal estimation and the region-growing method. They
employ the residuals in a plane fitting to approximately the local surface curvature. The
growing of segments is performed by using previously estimated point normals and their
residuals, and then the points are added to the segment by enforcing proximity and surface
smoothness criteria. Pu and Vosselman (2006) proposed an approach to automatically extract
planar surfaces from TLS point clouds following the region-growing segmentation method of
Vosselman et al. (2004). In this approach, several parameters need to be specified for the planar
surface-growing algorithm, such as the number of seeds, the surface-growing radius and the
maximum distance between surfaces. Using different values for these parameters, it is easy to
obtain bad segmentation (over-, under- and/or no segmentation). The authors prefer to have
over-segmentation rather than under-segmentation (Pu and Vosselman, 2006).

The region-growing method does suffer from the main and difficult disadvantage of
having to define the correct seed surface, because if the definition of the seed surface is wrong
(particularly in the case of large noisy data-sets) the error will grow and all processes will fail.
It can thus be considered a method which is sensitive to noisy data. Also, when it is employed
for segmentation of massive unstructured point clouds, it leads to bad segmentation results
(over-, under- and/or no segmentation) (Pu and Vosselman, 2006). Therefore, region-growing
algorithms are sometimes not very transparent and not homogeneously applied (Tarsha-Kurdi
et al., 2007).

The Method Based on Clustering Features

The method based on clustering features offers a general and flexible way to identify
homogeneous patterns in the data, without being restricted to one specific pattern. It can be
seen as a combination of two processes—identifying patterns in the data based on attributes
and grouping the data into clusters. Since clustering-of-features methods are dependent on the
quality of the computed attributes, attributes should identify the properties that capture the
information sought and produce the best separation among classes (Filin, 2002).

Filin (2002) presents a clustering algorithm using an unsupervised classification technique
for extracting homogeneous segments in ALS data from irregularly distributed points that carry
only a limited amount of information (x, y, z). The goal is to find clusters that are spatially
meaningful and at the same time to avoid over-segmentation. The author defines a seven-
dimensional vector for each feature point, consisting of point coordinates, the surface
parameters of a plane fitted to the neighbourhood of the point and the relative height difference
between the point and its neighbours. Hofmann et al. (2003) use a TIN structure, which is
calculated for ALS point clouds. They present a clustering-method-based feature vector for 2D
(slope and orientation) and 3D (slope, orientation and O-distance) parameters for each triangle
of a TIN structure. O-distance is defined as the minimum distance of a plane that is calculated
in the triangle from the origin. They mentioned in their conclusion: “Systematic errors will
prevent a successful clustering, but single outliers will not affect the cluster analysis”—page
116. Neighbourhood systems (called “slope adaptive™) are proposed by Filin and Pfeifer
(2006) for segmentation based on cluster analysis in a feature space for ALS data. They use
some parameters of the laser data (point density, measurement accuracy, and horizontal and
vertical point distribution) for defining the neighbourhood among the measured points. It is
clear that parameters are not matched for the present case. Biosca and Lerma (2008) proposed
an unsupervised clustering approach based on fuzzy methods. Both the Fuzzy C-Means (FCM)
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algorithm and the Possibilistic C-Means (PCM) mode-seeking algorithm are used in
combination with a similarity-driven cluster merging method.

While clustering methodology offers a general and flexible way to identify homogeneous
patterns in the data, without restriction to one specific pattern, feature extraction directly from
massive unstructured 3D point clouds based only on the clustering method has not proved to be
practical, especially in the presence of noisy data and outliers, since computationally clustering
multidimensional features for large data volumes is very expensive, and dealing with a large
volume of data is an obvious requirement for point clouds from laser scanning (Sapkota, 2008).
Also the method is sensitive to the noise in the data and is influenced by the definition of the
neighbourhoods. Therefore, an additional robust method is needed to eliminate the noisy data
and outliers, but these are essentially greedy algorithms and are very slow.

The Model Fitting Method

The model fitting method is based on fitting geometric primitive shapes, which can be
represented mathematically as planar surfaces; then points are conformed by the mathematical
representation that would group them as one segment. Two widely known algorithms in line
with model fitting methods are RANSAC (introduced by Fischler and Bolles, 1981) and the
Hough transform introduced by Hough (1962). While these two algorithms were used earlier
for processing point clouds automatically, with the major aim of constructing 3D building
models, an important comparison has been made by Tarsha-Kurdi et al. (2007) between the
algorithms in terms of processing time and sensitivity to cloud characteristics using ALS point
clouds. These authors show that despite the limitations of both algorithms, the RANSAC
algorithm is still more efficient than the Hough transform. Another advantage is that its
processing time is negligible even when the input data size is very large. On the other hand, the
Hough transform is very sensitive to the segmentation parameter values. Therefore, the present
work concentrates on the RANSAC algorithm for segmenting planar surfaces from
unstructured 3D point clouds.

While the RANSAC algorithm has the great advantage of being robust, even in the
presence of much noise, there are also shortcomings which should not be overlooked. The
original RANSAC paradigm depends on three main steps and three threshold values:

(1) Main steps
(a) Select N random points, as a sample, from the input data. The number N is the
minimum number of points needed to fit the desired surface. For example, for
fitting planar surfaces, N=3.
(b) Based on N, RANSAC calculates the mathematical parameters for that desired
surface. For example, for fitting planar surfaces, the parameters are @, b, ¢ and d in
following equation:

aX +bY +cZ+d =0 (1)

where (a, b, c) is the normal vector for the surface and d is the perpendicular distance
between that plane and the origin point.
(c) Use the threshold values to accept points from support points (remaining points).
(2) Threshold values
(a) (MaxIterNo): the maximum number of iterations.
(b) (MinPointNo): the minimum number of accepted points, from support points, in
one surface.
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(c) (Tol): the tolerance value for accepted inlier points based on perpendicular distances
between each point and its surface, based on the thickness of the acquired point
clouds. Here inliers are those points agreeing with equation (1) with a tolerance error.

Many papers have concluded that the two distinguishing shortcomings of the RANSAC
algorithm are its relative inefficiency and the spurious results with segments and/or extracted
planar surfaces from different point cloud sources. Usually the authors are interested in solving
the efficiency problem by trying to reduce the number of iterations and consequently reducing
the processing time, such as with the adaptive RANSAC algorithm suggested by Hartley and
Zisserman (2003).

In fact the efficiency for any algorithm is important; on the other hand, efficiency with the
probability of getting spurious results is not useful for users. According to Sapkota (2008),
“the plane detected by RANSAC may not necessarily belong to the same object
surface”—page 19, meaning that spurious surfaces may result. Therefore, a practical test
was carried out to evaluate the spurious results from RANSAC. Stairs provide the ideal
example for parallel-gradual planar surfaces (Fig. 1). According to the results obtained by
RANSAC for the segmented planar surface shown in Fig. 2, the spurious result (oblique
surfaces) is obvious. Spurious results represent a serious obstacle even to extracting
automatically only the planar surfaces by RANSAC. On the other hand, these results can also
be considered as a clear case of bad segmentation (under-segmentation and/or no
segmentation).

This problem may have happened because RANSAC accepts planar surfaces that only
have the maximum number of points (MaxPointNo) from all iterations (MaxIterNo). Thus, in
the case of parallel-gradual planar surfaces, the plane with (MaxPointNo) is usually the oblique
surface (spurious planes).

Dorninger and Nothegger (2007) touch on the problem when they mention that
“RANSAC uses the object space (i.e. point position) only and cannot take N additional
parameters (e.g. local normals) into account”—page 193. Although Bretar and Roux (2005)
proposed the Normal Driven RANSAC algorithm (ND-RANSAC) for extracting 3D planar
primitives using ALS point clouds by calculating the normal vectors for each point, they only
used the normal to select the random three points having the same orientation as the normal
vectors. In the present case, the problems of the spurious results from RANSAC for parallel-
gradual planar surfaces cannot be solved using the ND-RANSAC algorithm, since the three
random points having the same orientation of their normal vectors and MaxPointNo will also
be detected from the spurious plane (oblique surface) (see Fig. 2). While Boulaassal et al.
(2007) showed that a sequential application of RANSAC allows automatic segmentation of
planar surfaces from 3D point clouds acquired by TLS, these are not exposed to spurious
results from RANSAC and use a very small point cloud (47 710 points). In order to increase
RANSAC capacities for automatic roof-plane detection from ALS, Tarsha-Kurdi et al. (2008)
suggest two improvements. The first is an improvement of the original data by generating a

Fi1G. 1. The original stair point clouds.
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Fi1G. 2. Example of spurious planes obtained by the original RANSAC algorithm: (a) spurious point cloud results
for plane surfaces from stairs; (b) sketch of the spurious results (oblique surfaces) for segmented surfaces.

new point cloud and the second improvement is the adaptation of the algorithm, so that it
detects the best roof plane instead of the best mathematical one.

In order to deal with the previous problem, an adaptation is proposed for the RANSAC
algorithm called “Seq-NV-RANSAC” to check the normal vector (NV) between the existing
point clouds and the hypothesised RANSAC plane, which is created by three random points,
under an intuitive threshold value.

There are many motivations for the Seq-NV-RANSAC approach:

(a) Avoiding spurious surfaces from RANSAC for parallel-gradual planar surfaces such
as stairs.

(b) Creating a new approach that can deal directly with 3D point clouds from TLS.

(c) Segmenting and extracting the maximum different planar surfaces correctly, with best
fit to reality, for complex objects from massive unstructured 3D point clouds in the
presence of noisy data.

(d) Increase automation and reliability of segmentation results.

METHODOLOGY

In the ideal case, if the surface is planar, every neighbouring group of points must lead to
the same normal vector of that original surface. Also the perpendicular distance between that
point, which found some neighbours, and its plane must be equal to zero. On the other hand, in
practical cases, the massive unstructured 3D point clouds could be infected by many factors,
such as colour, roughness of different surfaces, the TLS instrument resolution and the
registration step (Boulaassal et al., 2007). These factors affect the final results, causing the 3D
point cloud even for a planar surface to appear not to be flat (that is, to have non-zero
thickness). This problem can be overcome by choosing a (Tol) threshold value carefully in
RANSAC based on the redundancy of acquired point clouds.

In this paper, a new automatic approach is proposed for the segmentation of planar
surfaces based on the combination of the RANSAC algorithm and NV for each point and using
the clustering features method to deal with massive unstructured point clouds in the presence of
random noisy points (shown in Fig. 3). Firstly, the neighbours are obtained for every point as a
group; secondly, NV is added for every point; thirdly, clustering point clouds based on NV
divide the huge number of point clouds into small parts (parallel surfaces); and fourthly, planar
surfaces are segmented based on Seq-NV-RANSAC. The approach is based on two logical
assumptions:
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F1G. 3. Flowchart for general steps.

(1) Unlike the surface-growing method assumption that there is a part in the data-set
where all points within some distance belong to the same surface (Vosselman et al.,
2004), the present assumption is that most of the small parts in the data-set belong to
the same surface, even when noisy points exist.

(2) Inside every neighbourhood group, most of the points must belong to the real surface.
Thus the noisy points should be a small number as a ratio of the total number of
points belonging to the same neighbourhood group.

Only the 3D point cloud data is obtained from the TLS instrument for every point; after
the registration step is complete P;= (X, ¥, Z).

The Steps

(1) Neighbour Groups and Fitting. Many methods can be used such as “k nearest
neighbours” (KNN) as mentioned earlier, fixed distance neighbours (FDN) or the creation of a
triangulated irregular network (TIN). In the present approach, the neighbours are acquired for
every point based on the FDN method, which uses a given fixed area of interest (AOI), and the
metric distance used is the Euclidean distance E; € {E!,E? E;,... E'}. The intuitive
threshold value E,, for the Euclidean distance can be easily found by the user according to the
thickness and minimum point density for the acquired point clouds. The object of this step is to
divide the point clouds into small neighbouring groups: G;= (P!,P?,P?,...,P");
G; € {G},G*,G},...,G!}. Then commonly fitting software based on the least squares
method is used to calculate the plane parameters of every group PL = (a,b,c,d) =
(ny,ny,n.,d); PL € {PL},PL?,PL},... ,PL"}. The NV=(n,n,n.) can then be added to

every original point op in every neighbouring group, and the perpendicular distance PD
between op and its surface PL is calculated by
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[(ne X X) + (ny X Y) + (n. x Z) +d|
\/1a +ng +n?

Finally, P, = (X,Y,Z, n,,ny,n., PD); P, € {P\,Py, Ps, ... P,}.

PD =

2)

(2) Segmentation Based on Cluster Features. In this step, all points are first sorted according
to PD values. Then using equation (3) the NV of each point is compared with the NV of the
point with the minimum PD value under the threshold value 0,,. By carefully choosing 0,,
all points thereafter will be clustered based on NV for groups with parallel surfaces,
PS; = (P, P2, P}, ... P"); PS; € {PS|,PS,,PSs,...,PS,}. Although every group could in-
clude some noisy points, this is not a problem since Seq-NV-RANSAC, in the next step, can
effectively deal with noisy data from the original RANSAC algorithm. Also one of the objectives
of this step is pre-processing for point clouds before applying Seq-NV-RANSAC; therefore, that
step will lead to dividing the huge numbers of point clouds into suitable numbers of significant
groups. Consequently, a reduced (MaxIterNo) threshold is needed for every group.

NVl X NV2 = (nXI X I’le) + (I’lyI X nyz) + (}’lzl X I/IZZ) = cos 0. (3)

(3) Seq-NV-RANSAC. As mentioned in the previous brief explanation of the original
RANSAC algorithm, this depends on three steps under three threshold values. In Seq-NV-
RANSAC, the first aim is to avoid the spurious surfaces in the original RANSAC results for
parallel-gradual planar surfaces such as stairs (shown in Fig. 2). Therefore, a new check is
added to the original RANSAC; the check is based on comparing the normal vector for every
point NV = (n,, n,, n.) and the normal vector for the three-random-point surface obtained by
RANSAC, in each iteration NVj, = (n¥, nipl, n3!), under threshold value R0, using
equation (3). Based on R0,;,, Seq-NV-RANSAC can decide automatically if that point will be
added to this surface’s iteration or not, and by employing this check there is no way that
(MaxPointNo) can be obtained from spurious surfaces. It must be noted that the NV,
direction, which is obtained by RANSAC, is based on the sequence of choosing the three
points; therefore, the check also considers the opposite direction for NV. If more than one
iteration has the maximum number of points (MaxPointNo), the decision on which plane to
accept is then based on the minimum summation of perpendicular distances (MinSumDis) in
the following equation between that plane and all its accepted points:

> (PD)?

SumDis = ————.
M (PointNo);

4)

Also for a group that has more than one planar surface, usually parallel surfaces, Seq-NV-
RANSAC can successfully extract all surfaces from every group, even in the presence of noisy
points, by applying all previous steps in sequence and automatically. The sequence loop will
stop if no more planar surfaces can be extracted from points rejected after every loop under the
existing threshold values. Then the final results for point clouds involved in each planar surface
will be displayed separately in different colours. On the one hand, Seq-NV-RANSAC works in
sequence and automatically. On the other hand, it has another advantage: the user can easily
change one or more threshold values to extract other planes from rejected points. Fig. 4 shows
the flowcharts for the main steps in the Seq-NV-RANSAC approach.
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F1G. 4. Flowcharts for the main steps in the “Seq-NV-RANSAC” approach: (a) flowchart for checking step for
every point under NV and Tol thresholds; (b) flowchart for the sequence step.

EXPERIMENTAL RESULTS AND ANALYSIS

Data Description

The front entrance steps and doorposts of the State Key Laboratory of Information
Engineering in Surveying, Mapping and Remote Sensing (LIESMARS) located in Wuhan
University, Wuhan, China were chosen for the study as shown in Fig. 5. [These steps are
referred to as “stairs” throughout the text in order to avoid any risk of confusion with
processing steps. |

A Trimble GS200 TLS (shown in Fig. 6) consists of the tripod-mounted instrument,
power supply unit, transportation box and portable computer—a laptop—supported by Point
Scape software for data capture. The instrument (GS200 3D) can be controlled by this
software. Table I shows the main parameters of the Trimble GS200 3D laser scanner.

Results of Extraction of Surfaces using Seq-NV-RANSAC

Case Study 1: Parallel-Gradual Planar Surfaces. Once all the planar surfaces such as the
stairs are extracted by Seq-NV-RANSAC, they are displayed separately with different colours
as shown in Fig. 7.
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(b)

Fi1G. 5. Full facade of LIESMARS, the sample object used in the study: (a) photograph of LIESMARS steps;
(b) point clouds from LIESMARS steps (310 972 points).

F1G. 6. Trimble GS200 TLS.
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TABLE I. Main parameters of Trimble GS200 3D laser scanner and typical accuracy values over varying range.

Standard deviation

Range (m) Dypical value (mm)

Addressability 700 m 5 1-4

Over scan range 2 to 350 m 50 1-4
Standard range 2 to 200 m 100 2:5
Scanning speed 5000 points/s 150 3-6
Minimum resolution 3 mm@100 m 200 65
Horizontal field of view 360°

Vertical field of view —22° to +38°
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F1G. 7. Parallel planar surfaces extracted using Seq-NV-RANSAC shown with different colours.

All these results were created in sequence and automatically. Secondly, by comparing the
results of extracted surfaces using Seq-NV-RANSAC shown in Fig. 7 and the original point
clouds of the stairs shown in Fig. 5(b), it can be seen that all the parallel-gradual planar
surfaces have been extracted successfully and no spurious surfaces occur in the stairs. Thirdly,
only two surfaces, shown in Fig. 7, have the same colour (red), an under-segmentation case,
meaning that the two surfaces have the same NV and are at the same level. Fourthly, some
holes occur in the extracted surfaces, which are due to the original data; this can be discovered
easily by comparing Fig. 7 and Fig. 5(b). Also by comparing the results of the surfaces
extracted using Seq-NV-RANSAC shown in Fig. 7 and using the original RANSAC algorithm
as shown in Fig. 8, the effect of the modification of the original RANSAC algorithm can be
seen clearly, as all planar surfaces have been extracted successfully and without any spurious
surfaces in the stairs, which are a clear example of parallel-gradual planar surfaces. According
to previous comparisons between the results obtained by Seq-NV-RANSAC and the results

F1G. 8. The spurious plane (oblique surfaces) result shown in different colours using the original RANSAC.
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obtained by the original RANSAC, the approach is working well since the result is an
improvement over what could have been expected previously.

Case Study 2: Complex Building Fa¢ade. According to the final results from Case Study
1, the proposed approach has successfully achieved many of the stated objectives in this
paper, since it can extract all parallel-gradual planar surfaces directly from point clouds and
does not produce spurious surfaces. On the other hand, TLS instruments are designed
especially for the acquisition of large quantities of data (up to some millions of points per
task) with high speed. Usually large quantities of massive 3D unstructured point clouds
should be obtained to cover all features for a complex facade object, which could include
many planar surfaces at many different levels, such as floors, and have different NV
directions such as the ground, walls with different tolerance depths, square columns, oblique
surfaces with different slopes and orientations, parallel-gradual planar surfaces (stairs),
windows and so on.

In order to evaluate the performance and general advantages and disadvantages of the
present approach, a second case study was carried out (Case Study 2). While in Case Study 1,
the number of points was 310 972, in Case Study 2 the number of points was 2 663 333 using
the full point clouds of the LIESMARS facade as shown in Fig. 9 as a clear example of
massive point clouds obtained for a complex facade.

After applying Seq-NV-RANSAC on the data of Case Study 2, 82 groups of planar
surfaces were extracted successfully and were displayed separately with different colours as
shown in Fig. 10.

On the one hand, all main planar surfaces for the complex facade, which has many
different levels and many different orientations and includes parallel-gradual planar surfaces,
are successfully segmented to groups in sequence and automatically using Seq-NV-RANSAC
without any spurious results. On the other hand, after an analysis of the result some of these
groups were found to have cases of bad segmentation (under-segmentation and over-
segmentation) as expected before.

Fig. 11 shows an example of an under-segmentation case, using the same colour for one
group. For example, the yellow colour shows those point clouds grouped as one group.

F1G. 9. Full point clouds of LIESMARS fagade, as Case Study 2 (2 663 333 points).

© 2010 The Authors. Journal Compilation © 2010 The Remote Sensing and Photogrammetry Society and Blackwell Publishing Ltd. 17



AWWAD et al. An improved approach for planar surfaces from unstructured 3D point clouds

Fi1G. 10. Eighty-two groups of planar surfaces of LIESMARS fagade extracted by Seq-NV-RANSAC from full
point clouds.

FiG. 11. Examples of groups having under-segmentation, shown by different colours.

However, in reality, that one group includes many different beams (planar surfaces). It should
be noted that the under-segmentation case in one group is due to these surfaces having the
same NV and being at the same level (here the same depth).

Fig. 12 shows an example of an over-segmentation case, using one colour for each group.
For example, the red and blue colours are expressing those point clouds that are grouped as two
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Fi1G. 12. Examples of over-segmentation case for surfaces shown by different colours.

different groups, but in reality, those two groups belong to only one planar surface. Unlike the
under-segmentation case for which there is a clear reason, over-segmentation cases can arise
due to many different reasons, such as the influence of noisy points in the calculation of the
initial NV for these points that leads to a big difference between a calculated NV of that point
and the RO, threshold value. The choice of the (Tol) threshold value can lead to the same
results, if not chosen carefully.

CONCLUSION AND FUTURE WORK

This paper presents a new approach, known as Seq-NV-RANSAC, for automatically
extracting planar surfaces directly from point clouds, avoiding the spurious surfaces that can be
created by the original RANSAC algorithm for parallel-gradual planar surfaces. Seq-NV-
RANSAC uses the normal vectors (NV) of points as a new additional check with the
original RANSAC algorithm. The normal vector check is between each point and the
hypothetical RANSAC plane, which is created based on three random points, under intuitive
threshold values. This process is repeated sequentially (Seq) and automatically until no planar
surfaces can be extracted from the remaining points. Also the Seq-NV-RANSAC approach
divides the data into small parts. That process will result in the avoidance of the spurious
surfaces obtained by RANSAC; efficient computation since RANSAC will deal every time
with a suitable number of points; quality improvement in the computed attributes; and an
increase in the degree of automation of surface extraction. Consequently, this leads to the
extracted surfaces better fitting reality. On the other hand, bad-segmentation problems can arise
in some groups when encountering special cases of planar surfaces from large numbers of point
clouds for a complex fagade, such as two or more planar surfaces that have the same level and
the same NV direction. This will lead to an under-segmentation case. Also over-segmentation
can arise due to many different reasons, such as the influence of noisy points in the calculation
of the initial NV for these points. However, the tools have already been devised to solve these
problems in future work.

Finally, the results from Seq-NV-RANSAC have potential since they are better than
previously expected and have achieved the main stated objectives of this paper. Also they
encourage the automatic creation of 3D models directly from 3D point clouds, since
segmentation is the essential step in the 3D modelling processes.

Future work will focus on solving the bad-segmentation problems, the extraction of
surface edges and the determination of threshold parameters adaptively.
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Résumeé

L’extraction d’objets dans de grands nuages de points non structurés et
présentant des densités locales variables, notamment en présence de points
aléatoirement bruités, n’est pas une tiche simple méme si l'objet recherché est une
surface plane. La segmentation est l’étape la plus importante du processus
d’extraction d’objets. En pratique, la plupart des méthodes de segmentation
s 'appuient sur une information géométrique pour segmenter le nuage de points
3D. Les objets recherchés incluent géneralement les positions de chaque point (X, Y,
Z), des directions normales a la surface estimées localement et les résidus des
surfaces qui optimisent [’ajustement; cependant, ces objets peuvent étre affectés par
des points bruités ce qui peut directement affecter le résultat de la segmentation.
C’est pourquoi de grands nuages de points non structurés et bruités conduisent
aussi a4 une mauvaise segmentation (sursegmentation, sous-segmentation ou
impossibilit¢ de segmenter). Bien que [’algorithme RANSAC (Random Sample
Consensus) soit efficace en présence de bruit ou de points aberrants, il présente deux
inconvénients significatifs, a savoir, d 'une part, son efficacité, et d’autre part, le fait
que le plan détecté par RANSAC ne coincide pas forcément avec la surface de l’objet
recherché. Ainsi, des surfaces parasites peuvent apparaitre, notamment dans le cas
de séries de surfaces planes comme des escaliers. L’idée innovante proposée dans cet
article est une modification de [’algorithme RANSAC appelée Seq-NV-RANSAC, qui
modifie le vecteur normal entre les nuages de points existants et le plan supposé par
RANSAC, lequel est créé par trois points au hasard, au-dessous d’une valeur seuil
intuitive. Apres [’extraction du premier plan, le processus est répété séquentiellement
et automatiquement jusqu’a ce que plus aucune surface plane ne puisse étre extraite
des points restant au-dessous du seuil. Cela empéche [’extraction de surfaces
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parasites, améliore la qualité des attributs calculés et accroit le degré
d’automatisation de [’extraction de surfaces. On obtient un résultat optimal pour
des surfaces existantes.

Zusammenfassung

Die Erfassung von Objektmerkmalen grofier, unstrukturierten Punktwolken mit
unterschiedlich lokalen Dichten und bei verrauschten Punkten ist keine einfache
Aufgabe, auch wenn nur eine ebene Oberfliche extrahiert werden soll.
Segmentierung ist der wichtigste Schritt bei der Merkmalsextraktion. In der Praxis
nutzen die meisten Segmentierungsansdtze geometrische Information, um die 3D
Punktwolke zu segmentieren. Die Merkmale umfassen iiblicherweise die Lage jeden
Punktes (X, Y und Z), die lokal bestimmte Oberflichennormale und Verbesserungen
fiir angepasste Oberflichen: allerdings kénnen diese Merkmale durch verrauschte
Punkte beeinflusst werden, und damit auch die Ergebnisse der nachfolgenden
Segmentierung. Daher kénnen stark unstrukturierte und verrauschte Punktwolken zu
schlechten Segmentierungen fiihren (Ubersegmentierung, Untersegmentierung oder
sogar keiner Segmentierung). Wihrend der RANSAC (Random Sample Consensus)
Algorithmus effektiv bei Rauschen und groben Fehlern arbeitet, hat er doch zwei
signifikante Nachteile: seine Effizienz und die Ebene, die mit RANSAC detektiert
wurde muss nicht unbedingt zu der gleichen Oberfliiche gehdren, d.h. unechte
Oberflichen kénnen generiert werden. Dies ist vor allem im Fall von stufenweise
ebenen Oberflichen wie bei Treppen gegeben. Die Innovation dieses Beitrages liegt
in der Modifizierung des RANSAC Algorithmus, dem sogenannten Seq-NV-RANSAC.
Dieser Algorithmus priift, mit Hilfe eines intuitiven Schwellwertes, den
Normalenvektor (NV) zwischen den existierenden Punktwolken und der Hypothese
der RANSAC Ebene, die durch 3 :zufillige Punkte festgelegt wird. Nach der
Extraktion der ersten Ebene, wird dieser Prozess sequentiell (Seq) automatisch
wiederholt, bis keine weiteren ebenen Oberflichen aus den verbliebenen Punkten bei
den gegebene Schwellwert extrahiert werden konnen. Dies verhindert die Extraktion
von virtuellen Oberflichen, ergibt eine Qualititsverbesserung der berechneten
Attribute und erhoht den Grad der Automation bei der Oberflichenextraktion. Damit
wird die beste Ubereinstimmung fiir die vorliegenden Oberfliichen erreicht.

Resumen

La extraccion de objetos a partir de nubes no estructuradas de puntos con
diferentes densidades locales, especialmente en presencia de puntos ruidosos
aleatorios, no es una tarea trivial incluso si el objeto es una superficie plana. La
segmentacion es el paso mds importante en el proceso de extraccion de objetos. En la
prdctica, la mayor parte de los procedimientos de segmentacion utilizan informacion
geométrica para fragmentar la nube de puntos tridimensional. Habitualmente los
objetos incluyen informacion de la posicion de cada punto (X, Yy Z), las normales a
la superficie estimadas localmente y los residuos de las superficies de mejor ajuste.
Sin embargo estos objetos podrian verse influenciados por puntos ruidosos y,
consecuentemente, afectar directamente a los resultados de la segmentacion. Por lo
tanto, las nubes de puntos ruidosos no estructuradas y masivas también dan lugar a
una segmentacion inadecuada (sobresegmentacion, infrasegmentacion, o falta de
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segmentacion). Aunque el algoritmo RANSAC (Random Sample Consensus) es eficaz
en presencia de ruido y valores extremos, tiene dos desventajas: su baja eficiencia y
el hecho de que el plano detectado por el algoritmo RANSAC no tiene por
qué pertenecer necesariamente a la misma superficie del objeto. Esto quiere decir
que pueden aparecer superficies espurias, especialmente en el caso de superficies
planas, graduales y paralelas, como en el caso de escaleras. La idea novedosa
propuesta en este articulo es una modificacion del algoritmo RANSAC, denominada
Seq-NV-RANSAC, que verifica si el vector normal entre las nubes de puntos
disponibles y el plano determinado por RANSAC, que se construye a partir de tres
puntos aleatorios, estd por debajo de un umbral intuitivo. Tras extraer el primer
plano, el proceso se repite secuencial (Seq) y automaticamente hasta que no se
pueden extraer mds superficies planas a partir de puntos restantes por debajo de los
umbrales establecidos. Esto evita la extraccion de superficies espurias, mejora la
calidad de los atributos calculados e incrementa el nivel de automatizacion de la
extraccion de superficies. De este modo se obtiene el mejor ajuste para las superficies
existentes.
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